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Novel multigrid orientated solution adaptive
time-step approaches
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SUMMARY

New performance-improving natural compatabilities between multigrid convergence acceleration and
adapted time-step solution procedures are discussed. Echoing the multigrid-coarsened space-steps and
interpolations, a novel adaptive temporal ‘subcycling’ strategy is presented. Tests show, saving storage
by basing time-steps on a focused relatively high unsteadiness region, a focused range of variables
or multigrid restricted=injected variables can be e�ective. A novel strategy of advancing comparative
solution elements on coarser multigrid levels is found to give time savings. Higher frequency spatial
components are accounted for on coarse levels through the multigrid forcing function. Copyright ?
2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For many years, when solving general ordinary di�erential equations (ODEs), temporal type
solution adaptive approaches have been used in many scienti�c �elds. Also, when solving the
�uid �ow equations spatial adaptations have seen signi�cant use [1; 2]. Both approaches can
involve the variation of step lengths, discretization orders or a combination of the two.
Generally, whatever numerical resolution approach is used, some form of truncation error

estimate is required. The sophistication of this can vary signi�cantly. For example in the
spatial adaptation work [3], grid re�nement is crudely=indirectly expressed as a function of
local variable gradients. More direct approaches compare solutions for example on two grids
(i.e. solutions for di�erent step sizes) or schemes of di�erent orders. Multigrid convergence
acceleration [4], which uses a hierarchy of grids, with generally a one to two-step coarsening
ratio, naturally lends itself to spatial step adaptation [5]. It also has the desirable properties
that it can be used to circumvent temporal stability restrictions [6] and coarser levels may
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more economically model evolving �ows—the �ner levels being periodically revisited [5].
Therefore, temporal adaptive approaches compatible with multigrid convergence are attractive.
Schonauer et al. [7] describe a variable order spatial adaptation for boundary layer �ows.

Ascher and Petzold [8] give the temporal equivalent to this. In practical cases, due to higher
order scheme dispersion, this latter approach is likely to also involve some time-step (�t)
adaptation. For example, when instability is detected �t can be reduced.

Figure 1. Schematics for Cases (A)–(C): (A) Transient wall driven �ow in a square box; (B) Transient
�ow in a complex system and (C) Cyclic �ow in a complex system.
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With the exception of the FIDAP �nite-element program, in most major commercial codes,
little use has been made of adaptive time stepping. Through the method of lines, the dis-
cretized �ow governing equations can be cast as temporal ODEs. Then, in principle, any
standard time adaptive ODE approach [8–10], can be applied to their solution. Possible stan-
dard approaches have many similarities to spatial adaptations already more widely used in
CFD. The scope here is restricted to adaptive schemes that can most readily be incorporated
into commercial codes. Three-dimensional, unsteady, turbulent, non-isothermal industrial �ows
require signi�cant storage. Since most adaptive time scheme approaches require comparison
of two solutions, various storage saving measures are considered. Solution adaptive time-step
strategies are tested for the following cases: (A) Transient wall driven �ow in a square box;
(B) Transient �ow in a complex system and (C) Cyclic �ow in a complex system. Schematics
for Cases (A) and (C) are given in Figure 1.

2. NUMERICAL METHODS

2.1. General solver details

The momentum and turbulence transport equations can be written in the common general
form:

�
@�
@t
+ �∇ · (u�)=∇ · (��∇�) + S� (1)

where � is either a velocity component (u; v or w) or turbulence kinetic energy (k). The
source term S� contains products and gradients of variables, �� a di�usion coe�cient and u a
velocity vector. Since the �uid density is constant the corresponding continuity equation can
be written as

∇ · u=0 (2)

The governing equations above (see Reference [11] for their full form) are converted to
a discrete form using a �nite volume based approach involving SIMPLE and TDMA or a
preconditioned conjugate gradient squared method with multigrid convergence [11]. A two-
level time (new and old) scheme is produced by making the discretized equation substitution

�=
(1 + ��t)

2
�new +

(1− ��t)
2

�old (3)

The parameter � can be altered to give the following schemes: (I) �rst-order backwards
Euler—�=�t−1; (II) Crank-Nicolson—�=0; (III) �rst-order forwards Euler—�=−�t−1;
(IV) Damped Crank-Nicolson [12]—�¿0 and (V) ADI [13]—� cycled with respect to spatial
coordinates taking values of �t−1 or −�t−1.

2.2. Time-step adaptation approaches

A crude gradient based method (GBM) of �t adaptation having no direct error estimate is
gained by mimicking the spatial approach of Anderson [3]
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Figure 2. Schematic of general adaptive approach.

�tnew =Ctf

(
1

1=N�m
∑N�m

i=1 |@�=@t|oldave

)
(4)

In the above Ct is a scale factor and N�m the number of variables considered=solved for
(e.g. u; v; w; k; : : :) at a multigrid level m. Since �t must be spatially constant |@�=@t| should
be averaged. Equation (4) has the following de�ciencies: �t is not directly based on the
solution error and |@�=@t|oldave must be monotonic decreasing (see Case (A) later). More re�ned
and sensible approaches are summarized in Figure 2. This shows two solution elements ((1)
and (2)) where �t ∝ �2 −�1. Solution Element 1 (a− c1) generally has the lower accuracy.
Element 2 (a − b2 − c2) mostly either involves two reduced steps or one higher order step.
Alternatively, Elements 1 and 2 can have the same orders and step sizes but use schemes of
di�erent natures. From simple Taylor’s series manipulation, for a scheme of order n− 1, the
following can be written

�tnew =Ct�told
∣∣∣ �
Eold

∣∣∣1=n (5)

where the superscripts ‘new’ and ‘old’ now refer to solutions for di�erent step sizes, ‘new’
being the latest; � is a pre-set error input value and Ct is now a safety factor. Since �t must
be spatially constant, Eold, an estimate of the temporal solution error (∝ �2−�1), needs to be
an averaged value. Equation (5) is used here with Eold based on: (a) time schemes (I) and
(III) (an Altered Scheme (ASc) procedure [14]); (b) time scheme (I) with one full step and
two half-steps (an Altered Step (A�t) procedure [9]) and (c) time schemes (I) and (II, IV
or V) (an Altered Order (An) approach [7; 15]). Ascher and Petzold [8] note approach (b),
although easy to implement, can be relatively expensive. Brenan et al. [10] show with An
approaches action must be taken to deal with instabilities and oscillations. Here the damped
scheme (IV) is used to deal with this problem (see Case (C)). Equation (5) is constrained
between speci�ed limits so that �tmin6�told|�=Eold|1=n6�tmax. For economical evaluation of
the averaged Eold the following is used

Eold =
1
N�m

N�m∑
j=1


 ∫ R′ |EoldP� |m dV∫ R′(|�oldP |+ �0)m dV


 (6)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:507–519



MULTIGRID CONVERGENCE AND ADAPTED TIME-STEP SOLUTIONS 511

where �0 is a reference scale, V volume, R′ the integration domain and EoldP� =�P2 − �P1
where the subscript P indicates the integration e�ectively involves summation over discrete
grid points. Evaluation of (6) generally requires storage of two full solutions. Hence, for a
3D system, with several solution variables it gives a signi�cant storage burden. Therefore,
here � is a mostly reduced selected range of variables (with often just N�m=1) and R′6R
where R is the full integration region of the �uid. The m subscripts are used to indicate that
variables can be restricted (involving producing weighted averages based on surrounding grid
point information) or injected (essentially directly transferring information from coincident
grid nodes, but here due to grid staggering this involves closest nodes) over R or R′ to a
coarser grid m + 1 (saving storage and a natural part of the multigrid process) and then
Equation (6) evaluated.

2.3. Novel subcycling with adaptive time stepping

The subcycling approach [14] applies extrapolated pressures to minor time-steps inside a
larger interval (mass conservation is enforced at the larger interval end). A key motivation
for this is that evaluating p (pressure) is often relatively expensive. Subcycling and the past
practice of using coarser spatial step pressure �elds suggests that perhaps p for solution (1)
(see Figure 2) could be interpolated to the comparative solution Element (2) without causing
signi�cant errors. Speci�cally solution Element 1 pressures are interpolated=injected to Figure 2
locations b2 and c2. Numerous ’subcycling’ possibilities exist. Here p from Element (1) is
used for (2) with � small enough to give a negligible conservation error. Hence �2 is used
without mass conservation enforced. Although many engineering turbulence models greatly
impact temporal accuracy, this is in an inconsistent fashion. This suggests, like p, certain
turbulence parameters could perhaps be subcycled. Since here, a k − l (l is an algebraic
turbulence length scale characterization) model is used, this implies a ‘subcycling’ of k.

2.4. Novel forcing function element adaptation

A novel V cycle based multigrid orientated temporal adaptation approach is illustrated in
Figure 3. In this n (subscripted) and ng are used to identify the number of outer iterations
at a particular grid level and the maximum number of levels, respectively. The coarsest level
corresponds to m=ng. The cycle starts at the �nest grid (m=1) continuing to the coarsest
and then returning to m=1 describing the left-hand side of the Figure 3 V shape (temporal
solution Element 1 of Figure 2). This solution element V cycle is repeated for n iterations cor-
responding to Element 1 time-step convergence. Brandt [5] proposed that for evolving �ows
�nest grid levels (m=1) can just be periodically revisited, most time advancement e�ort
being more economically focused on the coarser levels (m¿1). The �ner level information
is sensed on coarse grids through a forcing function [5]. This function is an additional dis-
cretized equation source term that ensures coarser grid solutions are an exact (but, through the
restriction operators, in a weighted average sense) of the �ne grid (m=1) solution. This non-
adaptive solution strategy suggests that the �rst adaptive solution Element (1) could be used
to generate a forcing function for Element (2), the latter just being advanced on computation-
ally cheaper m¿1 grids. The Figure 3 schematic is directly applicable to the An (Anm) and
ASc (AScm) approaches. For the A�t approach (A�tm), here, both half-steps are advanced
at m=2, adding another single iteration stage with forcing function assembly to Figure 3.
Other possible arrangements are not explored here. Also, no AScm implementation is made.
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Figure 3. Novel V cycle based multigrid adaptation approach.

This is because generating a forcing function from the stable backwards Euler element, for
use in the forwards Euler would, except for extremely dense grids, yield little computational
bene�t. The explicit component is already extremely cheap.

3. DISCUSSION OF RESULTS

3.1. Solution set-up and parameter details

For all the time-step adaptive solutions, because of the signi�cant �t variations, to avoid di-
vergence under-relaxation is found necessary. This is not needed for all �xed step cases. Gen-
erally, no e�ort is made here to �nd optimal relaxation parameter (�) values and what are felt
to be conservative levels are used. Under-relaxation is incorporated directly through the coe�-
cients of the discretized equations. For all cases �=0:1%, �=1:3 kg=m3, �=1:83× 10−5 kg=ms.
With the simpler Case (A) geometry=�ow Ct =0:9 in Equation (5). For all other cases
Ct =0:45. Nominal set up parameters for adaptive scheme solutions are given in Table I.
The parameters np and y+ave represent the number of pressure sweeps (sweeps of the TDMA
solver for corrections to p) and average �rst o�-wall grid node position in wall units, re-
spectively. The velocity reference scale V0 is used in the evaluation of percentage solution
errors. Tabulated �t values correspond to those required for sensibly time step independent
solutions. Convergence is based on either normalized residuals or the maximum root mean
square (rms�;max) for a particular variable where

rms�=

√∑
R (�

new − �old)2∑
R (�new)2

(7)

The Equation (7) superscripts are used in an iterative sense and the summations applied
over all m=1 grid points. At solid walls, for velocities, the usual no-slip and impermeability
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Table I. Nominal parameter values for Cases (A)–(C).

Case A B C

Dimensionality 2D 2D 3D
Grid density 33× 33− 121× 121 (x; y) 101× 101 (x; y) 101× 89× 45 (x; y; z)
Adaptation u and v and just v u and v and just v u
Variables
�t (s) 0.001 0.001 0.001
�tmin (s) 0 0.0001 0.001
�tmax (s) ∞ 0.5 NA
Ct 0.9 0.45 0.45
�u; v; w; k 0.3 0.5 0.4
�p 0.7 1 0.7
ng 4 1 1
np 6 16 6
y+ave NA — 15
V0 (m=s) 1:52× 10−4 3.8 4.5
v0 (m=s) 1× 10−10 3.8 1× 10−10
rms�;max 2:5× 10−5 1× 10−4 NA
Residual error (%) NA NA 0.5

conditions are applied. At open boundaries, p is �xed and generally the gradients of other
variables are set to zero in a second order fashion.

3.2. Transient wall driven �ow—case (A)

The Case (A) geometry is shown in Figure 1a. When t¿0, Re=400. The steady �ow is a
popular benchmark for which uniform grids [16] are most e�ective. The uniform Figure 4
grid, with the multigrid embedded [2] region near the moving wall is su�cient for sensible
steady �ow grid independence. Figure 5 shows contours of @v=@t at t=0:25, 0.5, 1 and 1:25 s.
It is clear that, like the spatial gradients, the key temporal gradients occur around X¡0:5 (X
is the dimensionless x co-ordinate such that 1¿X¿0). This information is exploited in the
�t adaptation strategy.
Figure 6 gives a linear-log plot for the cell area weighted average of @v=@t (over R′=R)

against t. Away from the initial transient, the @v=@t variation is approximately linear suggesting
the case is amenable to the crude GBM (Note, t¿40s oscillations are due to @v=@t approaching
zero and hence machine round-o� error). However, despite signi�cant e�orts, no satisfactory
relationship, between temporal gradients and �tnew could be found. Therefore this approach
was abandoned. It was concluded for more complex �ows, a relationship between |@�=@t|ave
and �t would generally be too time consuming to �nd.
Table II gives: nominal percentage savings in computing time (ts) (relative to a �t=0:03s

solution, giving a highly conservative estimate of adaptive �t performance), the per centage
of time-steps where E′

ave¿� (hence needing to be recomputed) and E
′
ave (the true average

solution error). Percentage errors are based on the driven wall velocity V0. Also, tabulated is
E′
ave for t¡5 s with E

old evaluated for both R′ ≈ R (column 5) and X60:5 (i.e. R′=R¡1) as
shown in column 6. Errors are further considered for R′=R¡1 when Equation (6) is calculated
at m=2 with storage saving injection (column 7) and a 6 point restriction (column 8).
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Figure 4. Embedded grid.

Results show the storage reduction of evaluating Eold over R′ has slightly improved accu-
racy. As might be expected, applying Equation (6) with m=2 and injection reduces accuracy.
Surprisingly, full restriction, that absorbs more information from the �nest grid level, with (6)
generally reduces accuracy further. Nonetheless for most engineering applications the accuracy
is more than acceptable. Importantly, use of just v or both u and v in (6) has little performance
in�uence. Considering its computational limitations (see Reference [8]) the A�t scheme per-
formance is surprisingly good. Table II suggests p ‘subcycling’ (p sc) is promising. Perhaps
the An(p sc) method shows both accuracy and speed gains because either spurious wiggles
or minor convergence error components in the higher order solution are suppressed. This
probably arises from using the more robust lower order pressure �eld solution component. It
is worth noting here that with the signi�cant range of time-steps occurring through an adap-
tive solution, discretized equation diagonal dominance can vary dramatically. Preliminary tests
using a conjugate gradient solver which is more robust with respect to diagonal dominance
shows smoother and more promising general t→∞ behaviour. Pleasingly, unlike the A�tm,
the Anm approach does not appear to signi�cantly reduce accuracy whilst producing around
a 20% ts improvement.
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Figure 5. Case (A) contours of @v=@t (m=s2) at: (a) t=0:25s, (b) t=0:5s, (c) t=1s and (d) t=1:25s.

3.3. Transient �ow in a complex system—Case B

Figure 1(b) gives a schematic of the industrially motivated Case (B) geometry. Tucker and
Pan [17] present full case details. This simulation is especially computationally expensive.
Therefore, 2D high Reynolds number k− l [11] predictions are used, the inlet condition being
adjusted to make the 2D temporal response approximately match the 3D response. The 2D-
solution plane incorporates the single �ow inlet and two �ow outlets. Basing temporal error
estimates (Equation (6)) on just u (saving storage) or both u and v makes little di�erence to
results.
Table III summarizes adaptive scheme performances for t¡1:6 s. Again, the ASc scheme

shows best performance. However, even this is 1.5% slower (identi�ed using the minus signs
in the table) than the �t=0:01 s solution. Nonetheless, the ASc E′

ave is 15% less than the
�t=0:01 s and so this result should not be considered as completely negative. Performances
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Figure 6. Case (A) time history.

Table II. Case (A) adaptive scheme performances.

Scheme ts (%) % �t Fails % E′
ave % E′

ave; t¡5 s
(t¡60 s) (t¡60 s) (t¡60 s)

Full Half region R′

region R
Standard Injection Restriction

GBM 0 NA NA NA NA NA NA
An 31 3.2 0.019 0.030 0.029 0.032 0.032
An(ADI) 31 0.07 0.017 0.018 — — —
ASc 57 0.80 0.055 0.023 0.022 0.024 —
A�t 56 0 0.062 0.024 0.023 0.025 0.028
An(p sc) 51 — 0.009 — — — —
A�t(p sc) 73 — 0.077 — — — —
Anm 50 0 0.02 — — — —
A�tm 20 0 0.18 — — — —

for all the other standard approaches seem especially disappointing. Therefore, ‘subcycling’
is again tried. Relative to the standard schemes, the table shows clear ts improvements with
just modest E′

ave increases. The latter increases make these ‘subcycling’ results slightly incon-
clusive. However, reminiscent of Case (A), when comparing the An(p sc) and An(p; k sc),
results ‘subcycling’ has given an accuracy improvement. This suggests it has the inherent
positive trait of enhancing stability. Storage saving injection and restriction seems to have

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:507–519



MULTIGRID CONVERGENCE AND ADAPTED TIME-STEP SOLUTIONS 517

Table III. Case (B) adaptive scheme performances.

Scheme ts % �t % E′
ave

(%) Fails
Standard Injection Restriction

�t=0:01 s NA NA 0.18 — —
An −38 0 0.12 0.12 0.12
ASc −1:5 0 0.15 0.15 0.15
A�t −56 0 0.12 0.12 0.12
An(p sc) −28 — 0.16 — —
An(p; k sc) −23 — 0.15 — —
A�t(p sc) −40 — 0.21 — —
A�t(p; k sc) −39 — 0.22 — —

Table IV. Case (C) adaptive scheme performances.

Scheme ts (%) %�t % E′
ave over one unsteadiness cycle

fails
Full R′ region
region

Standard Injection
approach

An 86 0 0.152 0.140 0.141
ASc 61 0 0.065 0.055 0.058
A�t 87 0 0.240 0.160 0.163

negligible a�ect on accuracy. One observed di�culty, that explains most of the poorer Case
(B) performance, is that initial transient severity causes numerical instabilities. These result in
adaptive schemes predicting extremely small steps. Usefully, the instability gives an in-built
conservativeness.

3.4. Cyclic �ow in a complex system—Case (C)

Figure 1c gives the Case (C) geometry. Tucker [11] presents full case details. The �ow
is driven by fans represented by quadratic momentum sources. Quadratic sink terms model
grills. The k − l model is again used. For the multiple Case (C) quadratic source terms [18]
and Neumann boundary conditions [19] Scheme (II) stability is not guaranteed. Therefore, to
control error growth, instead method (IV) is used with �=2:5. A further measure, motivated
by Scheme (II) concerns is limiting time-steps so that Courant numbers are below 5. The
temporal error estimate (Equation (6)) is based on the key variable of interest here, which
is the �uid x velocity component. Due to computational expense, the strategies tested are
limited. Therefore, for example, no tests involving saving storage by using multilevel restric-
tion operators are made. Instead just injection is tried. Analysis shows most unsteadiness is
focused around Y¿0:75 (the top quarter of the system). Performances of di�erent schemes,
for one unsteadiness cycle, are summarized in Table IV.
The table shows all schemes give solutions close to the speci�ed 0.1% error and signi�cant

(on average 78%) time savings (Note, the comparative solution error time-step for this case
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was to a large extent based on best computational convergence grounds). For this case, the
ASc approach appears least e�cient. Although the An method looks most e�ective, as noted
in the foregoing discussion, rather case speci�c stability measures are required. On these
grounds, for this case, the stable A�t approach probably should be considered best. Table IV
indicates evaluating (6) over R′ increases accuracy and reduces storage. Pleasingly, novel
storage saving injection just gives minor (on average 0.0025%) error increases.

4. CONCLUSIONS

Novel, performance-improving natural compatabilities between multigrid convergence and
adapted time-step (�t) solution procedures have been illustrated. These compatabilities can
yield both storage and time-savings (ts). Echoing the multigrid coarsened space steps and
interpolations, novel temporal ‘subcycling’ strategies are also considered. Out of the standard
ASc, A�t and An schemes none is clearly superior. The A�t stability seems to balance
its extra cost. The ‘subcycling’ approximation generally improves ts but can increase the
solution error. For all cases, where storage is saved by basing �t on regions of greatest
unsteadiness accuracy improvements are found. Also, the multigrid convergence compatible,
injection storage saving introduces negligible solution error. However, surprisingly, full multi-
grid restriction, which absorbs more �ne grid information, produces a slightly higher error
(nonetheless, relative to the overall solution error the increase is minor). Tests show that,
saving storage by basing time-steps on a restricted range of variables can also be e�ective.
For the An approach, advancing the subsequent comparative solution element on coarser grid
levels is found e�ective (19% additional time saving). Higher frequency spatial components
are accounted for on coarse levels through the multigrid convergence forcing function.
For certain cases, the use of �t clipping is found important—especially to prevent exces-

sively small steps. These can instead be limited by the choice of appropriate reference values.
Whether clipping or reference values are used partly depends on data availability. Cases re-
veal that solver robustness is a key issue. Time-steps and hence diagonal dominance can vary
dramatically over a solution.
With increasing solver robustness and a�ordable computer storage, the use of adaptive

time-stepping is likely to increase. For future work, conjugate gradient type solvers, that
are less sensitive to diagonal dominance, might be worth testing further. Also, with parallel
architecture machines, the two comparative solution elements could be completed concurrently.
This is likely to yield dramatic performance gains and so is worthy of future study. Generally,
the �rst solution component should be a good guess to the second. Then a Newton type solver
would be highly e�cient. Therefore, testing the use of a Newton type solver for the second
solution element also appears worthwhile future work.
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